Characterizing Preferred Motif Choices and Distance Impacts

Abstract

People’s daily travels are structured and can be expressed as networks. Few studies explore how people organize their daily travels and which behavioral principles result in the choices of specific network types. In this study, we first reconstruct location networks and activity networks for numerous individuals from high-resolution mobile phone positioning data and define frequent networks as motifs. The results suggest that 99.9% of people’s travels can be characterized by a limited set of location-based motifs and activity-based motifs. The results further reveal that the least effort principle governs the preferred motif choices through quantifying the rank-frequency properties. The scaling properties of distance characteristically impact motifs, and their scaling differences by node numbers and motif types coincide with the popularities of motifs, verifying the self-adaptions in motif choices; that is, although individuals travel with unique propensities, they always tend to choose the motif with the lowest consumption that satisfies their demand.

Publication
PLOS ONE
Jinzhou Cao(曹劲舟)
Jinzhou Cao(曹劲舟)
Assistant Professor

My research interests Urban big data mining, Geo-AI and Urban Analytics.